Sometimes things go wrong. This guide is aimed at making them right. It has
two sections:
Debugging your application - Useful
for users who are deploying code into Kubernetes and wondering why it is not working.
Debugging your cluster - Useful
for cluster administrators and people whose Kubernetes cluster is unhappy.
You should also check the known issues for the release
you're using.
Getting help
If your problem isn't answered by any of the guides above, there are variety of
ways for you to get help from the Kubernetes community.
Questions
The documentation on this site has been structured to provide answers to a wide
range of questions. Concepts explain the Kubernetes
architecture and how each component works, while Setup provides
practical instructions for getting started. Tasks show how to
accomplish commonly used tasks, and Tutorials are more
comprehensive walkthroughs of real-world, industry-specific, or end-to-end
development scenarios. The Reference section provides
detailed documentation on the Kubernetes API
and command-line interfaces (CLIs), such as kubectl.
Many people from the Kubernetes community hang out on Kubernetes Slack in the #kubernetes-users channel.
Slack requires registration; you can request an invitation,
and registration is open to everyone). Feel free to come and ask any and all questions.
Once registered, access the Kubernetes organisation in Slack
via your web browser or via Slack's own dedicated app.
Once you are registered, browse the growing list of channels for various subjects of
interest. For example, people new to Kubernetes may also want to join the
#kubernetes-novice channel. As another example, developers should join the
#kubernetes-dev channel.
There are also many country specific / local language channels. Feel free to join
these channels for localized support and info:
If you have what looks like a bug, or you would like to make a feature request,
please use the GitHub issue tracking system.
Before you file an issue, please search existing issues to see if your issue is
already covered.
If filing a bug, please include detailed information about how to reproduce the
problem, such as:
Kubernetes version: kubectl version
Cloud provider, OS distro, network configuration, and container runtime version
Steps to reproduce the problem
1 - Troubleshooting Applications
Debugging common containerized application issues.
This doc contains a set of resources for fixing issues with containerized applications. It covers things like common issues with Kubernetes resources (like Pods, Services, or StatefulSets), advice on making sense of container termination messages, and ways to debug running containers.
1.1 - Debug Pods
This guide is to help users debug applications that are deployed into Kubernetes and not behaving correctly.
This is not a guide for people who want to debug their cluster. For that you should check out
this guide.
Diagnosing the problem
The first step in troubleshooting is triage. What is the problem? Is it your Pods, your Replication Controller or
your Service?
The first step in debugging a Pod is taking a look at it. Check the current state of the Pod and recent events with the following command:
kubectl describe pods ${POD_NAME}
Look at the state of the containers in the pod. Are they all Running? Have there been recent restarts?
Continue debugging depending on the state of the pods.
My pod stays pending
If a Pod is stuck in Pending it means that it can not be scheduled onto a node. Generally this is because
there are insufficient resources of one type or another that prevent scheduling. Look at the output of the
kubectl describe ... command above. There should be messages from the scheduler about why it can not schedule
your pod. Reasons include:
You don't have enough resources: You may have exhausted the supply of CPU or Memory in your cluster, in this case
you need to delete Pods, adjust resource requests, or add new nodes to your cluster. See
Compute Resources document for more information.
You are using hostPort: When you bind a Pod to a hostPort there are a limited number of places that pod can be
scheduled. In most cases, hostPort is unnecessary, try using a Service object to expose your Pod. If you do require
hostPort then you can only schedule as many Pods as there are nodes in your Kubernetes cluster.
My pod stays waiting
If a Pod is stuck in the Waiting state, then it has been scheduled to a worker node, but it can't run on that machine.
Again, the information from kubectl describe ... should be informative. The most common cause of Waiting pods is a failure to pull the image. There are three things to check:
Make sure that you have the name of the image correct.
Have you pushed the image to the registry?
Try to manually pull the image to see if the image can be pulled. For example,
if you use Docker on your PC, run docker pull <image>.
My pod is crashing or otherwise unhealthy
Once your pod has been scheduled, the methods described in Debug Running Pods are available for debugging.
My pod is running but not doing what I told it to do
If your pod is not behaving as you expected, it may be that there was an error in your
pod description (e.g. mypod.yaml file on your local machine), and that the error
was silently ignored when you created the pod. Often a section of the pod description
is nested incorrectly, or a key name is typed incorrectly, and so the key is ignored.
For example, if you misspelled command as commnd then the pod will be created but
will not use the command line you intended it to use.
The first thing to do is to delete your pod and try creating it again with the --validate option.
For example, run kubectl apply --validate -f mypod.yaml.
If you misspelled command as commnd then will give an error like this:
I0805 10:43:25.129850 46757 schema.go:126] unknown field: commnd
I0805 10:43:25.129973 46757 schema.go:129] this may be a false alarm, see https://github.com/kubernetes/kubernetes/issues/6842
pods/mypod
The next thing to check is whether the pod on the apiserver
matches the pod you meant to create (e.g. in a yaml file on your local machine).
For example, run kubectl get pods/mypod -o yaml > mypod-on-apiserver.yaml and then
manually compare the original pod description, mypod.yaml with the one you got
back from apiserver, mypod-on-apiserver.yaml. There will typically be some
lines on the "apiserver" version that are not on the original version. This is
expected. However, if there are lines on the original that are not on the apiserver
version, then this may indicate a problem with your pod spec.
Debugging Replication Controllers
Replication controllers are fairly straightforward. They can either create Pods or they can't. If they can't
create pods, then please refer to the instructions above to debug your pods.
You can also use kubectl describe rc ${CONTROLLER_NAME} to introspect events related to the replication
controller.
Debugging Services
Services provide load balancing across a set of pods. There are several common problems that can make Services
not work properly. The following instructions should help debug Service problems.
First, verify that there are endpoints for the service. For every Service object, the apiserver makes an endpoints resource available.
You can view this resource with:
kubectl get endpoints ${SERVICE_NAME}
Make sure that the endpoints match up with the number of pods that you expect to be members of your service.
For example, if your Service is for an nginx container with 3 replicas, you would expect to see three different
IP addresses in the Service's endpoints.
My service is missing endpoints
If you are missing endpoints, try listing pods using the labels that Service uses. Imagine that you have
a Service where the labels are:
...spec:- selector:name:nginxtype:frontend
You can use:
kubectl get pods --selector=name=nginx,type=frontend
to list pods that match this selector. Verify that the list matches the Pods that you expect to provide your Service.
Verify that the pod's containerPort matches up with the Service's targetPort
If none of the above solves your problem, follow the instructions in
Debugging Service document
to make sure that your Service is running, has Endpoints, and your Pods are
actually serving; you have DNS working, iptables rules installed, and kube-proxy
does not seem to be misbehaving.
An issue that comes up rather frequently for new installations of Kubernetes is
that a Service is not working properly. You've run your Pods through a
Deployment (or other workload controller) and created a Service, but you
get no response when you try to access it. This document will hopefully help
you to figure out what's going wrong.
Running commands in a Pod
For many steps here you will want to see what a Pod running in the cluster
sees. The simplest way to do this is to run an interactive busybox Pod:
kubectl run -it --rm --restart=Never busybox --image=gcr.io/google-containers/busybox sh
Note: If you don't see a command prompt, try pressing enter.
If you already have a running Pod that you prefer to use, you can run a
command in it using:
For the purposes of this walk-through, let's run some Pods. Since you're
probably debugging your own Service you can substitute your own details, or you
can follow along and get a second data point.
The label "app" is automatically set by kubectl create deployment to the name of the
Deployment.
You can confirm your Pods are running:
kubectl get pods -l app=hostnames
NAME READY STATUS RESTARTS AGE
hostnames-632524106-bbpiw 1/1 Running 0 2m
hostnames-632524106-ly40y 1/1 Running 0 2m
hostnames-632524106-tlaok 1/1 Running 0 2m
You can also confirm that your Pods are serving. You can get the list of
Pod IP addresses and test them directly.
kubectl get pods -l app=hostnames \
-o go-template='{{range .items}}{{.status.podIP}}{{"\n"}}{{end}}'
10.244.0.5
10.244.0.6
10.244.0.7
The example container used for this walk-through serves its own hostname
via HTTP on port 9376, but if you are debugging your own app, you'll want to
use whatever port number your Pods are listening on.
From within a pod:
for ep in 10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376; do
wget -qO- $epdone
If you are not getting the responses you expect at this point, your Pods
might not be healthy or might not be listening on the port you think they are.
You might find kubectl logs to be useful for seeing what is happening, or
perhaps you need to kubectl exec directly into your Pods and debug from
there.
Assuming everything has gone to plan so far, you can start to investigate why
your Service doesn't work.
Does the Service exist?
The astute reader will have noticed that you did not actually create a Service
yet - that is intentional. This is a step that sometimes gets forgotten, and
is the first thing to check.
What would happen if you tried to access a non-existent Service? If
you have another Pod that consumes this Service by name you would get
something like:
wget -O- hostnames
Resolving hostnames (hostnames)... failed: Name or service not known.
wget: unable to resolve host address 'hostnames'
The first thing to check is whether that Service actually exists:
kubectl get svc hostnames
No resources found.
Error from server (NotFound): services "hostnames" not found
Let's create the Service. As before, this is for the walk-through - you can
use your own Service's details here.
In order to highlight the full range of configuration, the Service you created
here uses a different port number than the Pods. For many real-world
Services, these values might be the same.
Any Network Policy Ingress rules affecting the target Pods?
If you have deployed any Network Policy Ingress rules which may affect incoming
traffic to hostnames-* Pods, these need to be reviewed.
If this works, you'll need to adjust your app to use a cross-namespace name, or
run your app and Service in the same Namespace. If this still fails, try a
fully-qualified name:
Note the suffix here: "default.svc.cluster.local". The "default" is the
Namespace you're operating in. The "svc" denotes that this is a Service.
The "cluster.local" is your cluster domain, which COULD be different in your
own cluster.
You can also try this from a Node in the cluster:
Note: 10.0.0.10 is the cluster's DNS Service IP, yours might be different.
If you are able to do a fully-qualified name lookup but not a relative one, you
need to check that your /etc/resolv.conf file in your Pod is correct. From
within a Pod:
The nameserver line must indicate your cluster's DNS Service. This is
passed into kubelet with the --cluster-dns flag.
The search line must include an appropriate suffix for you to find the
Service name. In this case it is looking for Services in the local
Namespace ("default.svc.cluster.local"), Services in all Namespaces
("svc.cluster.local"), and lastly for names in the cluster ("cluster.local").
Depending on your own install you might have additional records after that (up
to 6 total). The cluster suffix is passed into kubelet with the
--cluster-domain flag. Throughout this document, the cluster suffix is
assumed to be "cluster.local". Your own clusters might be configured
differently, in which case you should change that in all of the previous
commands.
The options line must set ndots high enough that your DNS client library
considers search paths at all. Kubernetes sets this to 5 by default, which is
high enough to cover all of the DNS names it generates.
Does any Service work by DNS name?
If the above still fails, DNS lookups are not working for your Service. You
can take a step back and see what else is not working. The Kubernetes master
Service should always work. From within a Pod:
If this fails, please see the kube-proxy section
of this document, or even go back to the top of this document and start over,
but instead of debugging your own Service, debug the DNS Service.
Does the Service work by IP?
Assuming you have confirmed that DNS works, the next thing to test is whether your
Service works by its IP address. From a Pod in your cluster, access the
Service's IP (from kubectl get above).
for i in $(seq 1 3); do
wget -qO- 10.0.1.175:80
done
If your Service is working, you should get correct responses. If not, there
are a number of things that could be going wrong. Read on.
Is the Service defined correctly?
It might sound silly, but you should really double and triple check that your
Service is correct and matches your Pod's port. Read back your Service
and verify it:
Is the Service port you are trying to access listed in spec.ports[]?
Is the targetPort correct for your Pods (some Pods use a different port than the Service)?
If you meant to use a numeric port, is it a number (9376) or a string "9376"?
If you meant to use a named port, do your Pods expose a port with the same name?
Is the port's protocol correct for your Pods?
Does the Service have any Endpoints?
If you got this far, you have confirmed that your Service is correctly
defined and is resolved by DNS. Now let's check that the Pods you ran are
actually being selected by the Service.
Earlier you saw that the Pods were running. You can re-check that:
kubectl get pods -l app=hostnames
NAME READY STATUS RESTARTS AGE
hostnames-632524106-bbpiw 1/1 Running 0 1h
hostnames-632524106-ly40y 1/1 Running 0 1h
hostnames-632524106-tlaok 1/1 Running 0 1h
The -l app=hostnames argument is a label selector configured on the Service.
The "AGE" column says that these Pods are about an hour old, which implies that
they are running fine and not crashing.
The "RESTARTS" column says that these pods are not crashing frequently or being
restarted. Frequent restarts could lead to intermittent connectivity issues.
If the restart count is high, read more about how to debug pods.
Inside the Kubernetes system is a control loop which evaluates the selector of
every Service and saves the results into a corresponding Endpoints object.
kubectl get endpoints hostnames
NAME ENDPOINTS
hostnames 10.244.0.5:9376,10.244.0.6:9376,10.244.0.7:9376
This confirms that the endpoints controller has found the correct Pods for
your Service. If the ENDPOINTS column is <none>, you should check that
the spec.selector field of your Service actually selects for
metadata.labels values on your Pods. A common mistake is to have a typo or
other error, such as the Service selecting for app=hostnames, but the
Deployment specifying run=hostnames, as in versions previous to 1.18, where
the kubectl run command could have been also used to create a Deployment.
Are the Pods working?
At this point, you know that your Service exists and has selected your Pods.
At the beginning of this walk-through, you verified the Pods themselves.
Let's check again that the Pods are actually working - you can bypass the
Service mechanism and go straight to the Pods, as listed by the Endpoints
above.
Note: These commands use the Pod port (9376), rather than the Service port (80).
From within a Pod:
for ep in 10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376; do
wget -qO- $epdone
You expect each Pod in the Endpoints list to return its own hostname. If
this is not what happens (or whatever the correct behavior is for your own
Pods), you should investigate what's happening there.
Is the kube-proxy working?
If you get here, your Service is running, has Endpoints, and your Pods
are actually serving. At this point, the whole Service proxy mechanism is
suspect. Let's confirm it, piece by piece.
The default implementation of Services, and the one used on most clusters, is
kube-proxy. This is a program that runs on every node and configures one of a
small set of mechanisms for providing the Service abstraction. If your
cluster does not use kube-proxy, the following sections will not apply, and you
will have to investigate whatever implementation of Services you are using.
Is kube-proxy running?
Confirm that kube-proxy is running on your Nodes. Running directly on a
Node, you should get something like the below:
Next, confirm that it is not failing something obvious, like contacting the
master. To do this, you'll have to look at the logs. Accessing the logs
depends on your Node OS. On some OSes it is a file, such as
/var/log/kube-proxy.log, while other OSes use journalctl to access logs. You
should see something like:
I1027 22:14:53.995134 5063 server.go:200] Running in resource-only container "/kube-proxy"
I1027 22:14:53.998163 5063 server.go:247] Using iptables Proxier.
I1027 22:14:53.999055 5063 server.go:255] Tearing down userspace rules. Errors here are acceptable.
I1027 22:14:54.038140 5063 proxier.go:352] Setting endpoints for "kube-system/kube-dns:dns-tcp" to [10.244.1.3:53]
I1027 22:14:54.038164 5063 proxier.go:352] Setting endpoints for "kube-system/kube-dns:dns" to [10.244.1.3:53]
I1027 22:14:54.038209 5063 proxier.go:352] Setting endpoints for "default/kubernetes:https" to [10.240.0.2:443]
I1027 22:14:54.038238 5063 proxier.go:429] Not syncing iptables until Services and Endpoints have been received from master
I1027 22:14:54.040048 5063 proxier.go:294] Adding new service "default/kubernetes:https" at 10.0.0.1:443/TCP
I1027 22:14:54.040154 5063 proxier.go:294] Adding new service "kube-system/kube-dns:dns" at 10.0.0.10:53/UDP
I1027 22:14:54.040223 5063 proxier.go:294] Adding new service "kube-system/kube-dns:dns-tcp" at 10.0.0.10:53/TCP
If you see error messages about not being able to contact the master, you
should double-check your Node configuration and installation steps.
One of the possible reasons that kube-proxy cannot run correctly is that the
required conntrack binary cannot be found. This may happen on some Linux
systems, depending on how you are installing the cluster, for example, you are
installing Kubernetes from scratch. If this is the case, you need to manually
install the conntrack package (e.g. sudo apt install conntrack on Ubuntu)
and then retry.
Kube-proxy can run in one of a few modes. In the log listed above, the
line Using iptables Proxier indicates that kube-proxy is running in
"iptables" mode. The most common other mode is "ipvs". The older "userspace"
mode has largely been replaced by these.
Iptables mode
In "iptables" mode, you should see something like the following on a Node:
iptables-save | grep hostnames
-A KUBE-SEP-57KPRZ3JQVENLNBR -s 10.244.3.6/32 -m comment --comment "default/hostnames:" -j MARK --set-xmark 0x00004000/0x00004000
-A KUBE-SEP-57KPRZ3JQVENLNBR -p tcp -m comment --comment "default/hostnames:" -m tcp -j DNAT --to-destination 10.244.3.6:9376
-A KUBE-SEP-WNBA2IHDGP2BOBGZ -s 10.244.1.7/32 -m comment --comment "default/hostnames:" -j MARK --set-xmark 0x00004000/0x00004000
-A KUBE-SEP-WNBA2IHDGP2BOBGZ -p tcp -m comment --comment "default/hostnames:" -m tcp -j DNAT --to-destination 10.244.1.7:9376
-A KUBE-SEP-X3P2623AGDH6CDF3 -s 10.244.2.3/32 -m comment --comment "default/hostnames:" -j MARK --set-xmark 0x00004000/0x00004000
-A KUBE-SEP-X3P2623AGDH6CDF3 -p tcp -m comment --comment "default/hostnames:" -m tcp -j DNAT --to-destination 10.244.2.3:9376
-A KUBE-SERVICES -d 10.0.1.175/32 -p tcp -m comment --comment "default/hostnames: cluster IP" -m tcp --dport 80 -j KUBE-SVC-NWV5X2332I4OT4T3
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -m statistic --mode random --probability 0.33332999982 -j KUBE-SEP-WNBA2IHDGP2BOBGZ
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-X3P2623AGDH6CDF3
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -j KUBE-SEP-57KPRZ3JQVENLNBR
For each port of each Service, there should be 1 rule in KUBE-SERVICES and
one KUBE-SVC-<hash> chain. For each Pod endpoint, there should be a small
number of rules in that KUBE-SVC-<hash> and one KUBE-SEP-<hash> chain with
a small number of rules in it. The exact rules will vary based on your exact
config (including node-ports and load-balancers).
IPVS mode
In "ipvs" mode, you should see something like the following on a Node:
For each port of each Service, plus any NodePorts, external IPs, and
load-balancer IPs, kube-proxy will create a virtual server. For each Pod
endpoint, it will create corresponding real servers. In this example, service
hostnames(10.0.1.175:80) has 3 endpoints(10.244.0.5:9376,
10.244.0.6:9376, 10.244.0.7:9376).
Userspace mode
In rare cases, you may be using "userspace" mode. From your Node:
There should be 2 rules for each port of your Service (only one in this
example) - a "KUBE-PORTALS-CONTAINER" and a "KUBE-PORTALS-HOST".
Almost nobody should be using the "userspace" mode any more, so you won't spend
more time on it here.
Is kube-proxy proxying?
Assuming you do see one the above cases, try again to access your Service by
IP from one of your Nodes:
curl 10.0.1.175:80
hostnames-632524106-bbpiw
If this fails and you are using the userspace proxy, you can try accessing the
proxy directly. If you are using the iptables proxy, skip this section.
Look back at the iptables-save output above, and extract the
port number that kube-proxy is using for your Service. In the above
examples it is "48577". Now connect to that:
curl localhost:48577
hostnames-632524106-tlaok
If this still fails, look at the kube-proxy logs for specific lines like:
Setting endpoints for default/hostnames:default to [10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376]
If you don't see those, try restarting kube-proxy with the -v flag set to 4, and
then look at the logs again.
Edge case: A Pod fails to reach itself via the Service IP
This might sound unlikely, but it does happen and it is supposed to work.
This can happen when the network is not properly configured for "hairpin"
traffic, usually when kube-proxy is running in iptables mode and Pods
are connected with bridge network. The Kubelet exposes a hairpin-modeflag that allows endpoints of a Service to loadbalance
back to themselves if they try to access their own Service VIP. The
hairpin-mode flag must either be set to hairpin-veth or
promiscuous-bridge.
The common steps to trouble shoot this are as follows:
Confirm hairpin-mode is set to hairpin-veth or promiscuous-bridge.
You should see something like the below. hairpin-mode is set to
promiscuous-bridge in the following example.
Confirm the effective hairpin-mode. To do this, you'll have to look at
kubelet log. Accessing the logs depends on your Node OS. On some OSes it
is a file, such as /var/log/kubelet.log, while other OSes use journalctl
to access logs. Please be noted that the effective hairpin mode may not
match --hairpin-mode flag due to compatibility. Check if there is any log
lines with key word hairpin in kubelet.log. There should be log lines
indicating the effective hairpin mode, like something below.
I0629 00:51:43.648698 3252 kubelet.go:380] Hairpin mode set to "promiscuous-bridge"
If the effective hairpin mode is hairpin-veth, ensure the Kubelet has
the permission to operate in /sys on node. If everything works properly,
you should see something like:
for intf in /sys/devices/virtual/net/cbr0/brif/*; do cat $intf/hairpin_mode; done
1
1
1
1
If the effective hairpin mode is promiscuous-bridge, ensure Kubelet
has the permission to manipulate linux bridge on node. If cbr0 bridge is
used and configured properly, you should see:
ifconfig cbr0 |grep PROMISC
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1460 Metric:1
Seek help if none of above works out.
Seek help
If you get this far, something very strange is happening. Your Service is
running, has Endpoints, and your Pods are actually serving. You have DNS
working, and kube-proxy does not seem to be misbehaving. And yet your
Service is not working. Please let us know what is going on, so we can help
investigate!
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster.
You should have a StatefulSet running that you want to investigate.
Debugging a StatefulSet
In order to list all the pods which belong to a StatefulSet, which have a label app=myapp set on them,
you can use the following:
kubectl get pods -l app=myapp
If you find that any Pods listed are in Unknown or Terminating state for an extended period of time,
refer to the Deleting StatefulSet Pods task for
instructions on how to deal with them.
You can debug individual Pods in a StatefulSet using the
Debugging Pods guide.
This page shows how to investigate problems related to the execution of
Init Containers. The example command lines below refer to the Pod as
<pod-name> and the Init Containers as <init-container-1> and
<init-container-2>.
Before you begin
You need to have a Kubernetes cluster, and the kubectl command-line tool must
be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a
cluster, you can create one by using
minikube
or you can use one of these Kubernetes playgrounds:
You can also access the Init Container statuses programmatically by reading the
status.initContainerStatuses field on the Pod Spec:
kubectl get pod nginx --template '{{.status.initContainerStatuses}}'
This command will return the same information as above in raw JSON.
Accessing logs from Init Containers
Pass the Init Container name along with the Pod name
to access its logs.
kubectl logs <pod-name> -c <init-container-2>
Init Containers that run a shell script print
commands as they're executed. For example, you can do this in Bash by running
set -x at the beginning of the script.
Understanding Pod status
A Pod status beginning with Init: summarizes the status of Init Container
execution. The table below describes some example status values that you might
see while debugging Init Containers.
Status
Meaning
Init:N/M
The Pod has M Init Containers, and N have completed so far.
Init:Error
An Init Container has failed to execute.
Init:CrashLoopBackOff
An Init Container has failed repeatedly.
Pending
The Pod has not yet begun executing Init Containers.
PodInitializing or Running
The Pod has already finished executing Init Containers.
1.5 - Debug Running Pods
This page explains how to debug Pods running (or crashing) on a Node.
Before you begin
Your Pod should already be
scheduled and running. If your Pod is not yet running, start with Debugging
Pods.
For some of the advanced debugging steps you need to know on which Node the
Pod is running and have shell access to run commands on that Node. You don't
need that access to run the standard debug steps that use kubectl.
Using kubectl describe pod to fetch details about pods
For this example we'll use a Deployment to create two pods, similar to the earlier example.
NAME READY STATUS RESTARTS AGE
nginx-deployment-67d4bdd6f5-cx2nz 1/1 Running 0 13s
nginx-deployment-67d4bdd6f5-w6kd7 1/1 Running 0 13s
We can retrieve a lot more information about each of these pods using kubectl describe pod. For example:
kubectl describe pod nginx-deployment-67d4bdd6f5-w6kd7
Name: nginx-deployment-67d4bdd6f5-w6kd7
Namespace: default
Priority: 0
Node: kube-worker-1/192.168.0.113
Start Time: Thu, 17 Feb 2022 16:51:01 -0500
Labels: app=nginx
pod-template-hash=67d4bdd6f5
Annotations: <none>
Status: Running
IP: 10.88.0.3
IPs:
IP: 10.88.0.3
IP: 2001:db8::1
Controlled By: ReplicaSet/nginx-deployment-67d4bdd6f5
Containers:
nginx:
Container ID: containerd://5403af59a2b46ee5a23fb0ae4b1e077f7ca5c5fb7af16e1ab21c00e0e616462a
Image: nginx
Image ID: docker.io/library/nginx@sha256:2834dc507516af02784808c5f48b7cbe38b8ed5d0f4837f16e78d00deb7e7767
Port: 80/TCP
Host Port: 0/TCP
State: Running
Started: Thu, 17 Feb 2022 16:51:05 -0500
Ready: True
Restart Count: 0
Limits:
cpu: 500m
memory: 128Mi
Requests:
cpu: 500m
memory: 128Mi
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-bgsgp (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
kube-api-access-bgsgp:
Type: Projected (a volume that contains injected data from multiple sources)
TokenExpirationSeconds: 3607
ConfigMapName: kube-root-ca.crt
ConfigMapOptional: <nil>
DownwardAPI: true
QoS Class: Guaranteed
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 34s default-scheduler Successfully assigned default/nginx-deployment-67d4bdd6f5-w6kd7 to kube-worker-1
Normal Pulling 31s kubelet Pulling image "nginx"
Normal Pulled 30s kubelet Successfully pulled image "nginx" in 1.146417389s
Normal Created 30s kubelet Created container nginx
Normal Started 30s kubelet Started container nginx
Here you can see configuration information about the container(s) and Pod (labels, resource requirements, etc.), as well as status information about the container(s) and Pod (state, readiness, restart count, events, etc.).
The container state is one of Waiting, Running, or Terminated. Depending on the state, additional information will be provided -- here you can see that for a container in Running state, the system tells you when the container started.
Ready tells you whether the container passed its last readiness probe. (In this case, the container does not have a readiness probe configured; the container is assumed to be ready if no readiness probe is configured.)
Restart Count tells you how many times the container has been restarted; this information can be useful for detecting crash loops in containers that are configured with a restart policy of 'always.'
Currently the only Condition associated with a Pod is the binary Ready condition, which indicates that the pod is able to service requests and should be added to the load balancing pools of all matching services.
Lastly, you see a log of recent events related to your Pod. The system compresses multiple identical events by indicating the first and last time it was seen and the number of times it was seen. "From" indicates the component that is logging the event, "SubobjectPath" tells you which object (e.g. container within the pod) is being referred to, and "Reason" and "Message" tell you what happened.
Example: debugging Pending Pods
A common scenario that you can detect using events is when you've created a Pod that won't fit on any node. For example, the Pod might request more resources than are free on any node, or it might specify a label selector that doesn't match any nodes. Let's say we created the previous Deployment with 5 replicas (instead of 2) and requesting 600 millicores instead of 500, on a four-node cluster where each (virtual) machine has 1 CPU. In that case one of the Pods will not be able to schedule. (Note that because of the cluster addon pods such as fluentd, skydns, etc., that run on each node, if we requested 1000 millicores then none of the Pods would be able to schedule.)
kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-1006230814-6winp 1/1 Running 0 7m
nginx-deployment-1006230814-fmgu3 1/1 Running 0 7m
nginx-deployment-1370807587-6ekbw 1/1 Running 0 1m
nginx-deployment-1370807587-fg172 0/1 Pending 0 1m
nginx-deployment-1370807587-fz9sd 0/1 Pending 0 1m
To find out why the nginx-deployment-1370807587-fz9sd pod is not running, we can use kubectl describe pod on the pending Pod and look at its events:
kubectl describe pod nginx-deployment-1370807587-fz9sd
Name: nginx-deployment-1370807587-fz9sd
Namespace: default
Node: /
Labels: app=nginx,pod-template-hash=1370807587
Status: Pending
IP:
Controllers: ReplicaSet/nginx-deployment-1370807587
Containers:
nginx:
Image: nginx
Port: 80/TCP
QoS Tier:
memory: Guaranteed
cpu: Guaranteed
Limits:
cpu: 1
memory: 128Mi
Requests:
cpu: 1
memory: 128Mi
Environment Variables:
Volumes:
default-token-4bcbi:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-4bcbi
Events:
FirstSeen LastSeen Count From SubobjectPath Type Reason Message
--------- -------- ----- ---- ------------- -------- ------ -------
1m 48s 7 {default-scheduler } Warning FailedScheduling pod (nginx-deployment-1370807587-fz9sd) failed to fit in any node
fit failure on node (kubernetes-node-6ta5): Node didn't have enough resource: CPU, requested: 1000, used: 1420, capacity: 2000
fit failure on node (kubernetes-node-wul5): Node didn't have enough resource: CPU, requested: 1000, used: 1100, capacity: 2000
Here you can see the event generated by the scheduler saying that the Pod failed to schedule for reason FailedScheduling (and possibly others). The message tells us that there were not enough resources for the Pod on any of the nodes.
To correct this situation, you can use kubectl scale to update your Deployment to specify four or fewer replicas. (Or you could leave the one Pod pending, which is harmless.)
Events such as the ones you saw at the end of kubectl describe pod are persisted in etcd and provide high-level information on what is happening in the cluster. To list all events you can use
kubectl get events
but you have to remember that events are namespaced. This means that if you're interested in events for some namespaced object (e.g. what happened with Pods in namespace my-namespace) you need to explicitly provide a namespace to the command:
kubectl get events --namespace=my-namespace
To see events from all namespaces, you can use the --all-namespaces argument.
In addition to kubectl describe pod, another way to get extra information about a pod (beyond what is provided by kubectl get pod) is to pass the -o yaml output format flag to kubectl get pod. This will give you, in YAML format, even more information than kubectl describe pod--essentially all of the information the system has about the Pod. Here you will see things like annotations (which are key-value metadata without the label restrictions, that is used internally by Kubernetes system components), restart policy, ports, and volumes.
kubectl get pod nginx-deployment-1006230814-6winp -o yaml
If the container image includes
debugging utilities, as is the case with images built from Linux and Windows OS
base images, you can run commands inside a specific container with
kubectl exec:
Ephemeral containers
are useful for interactive troubleshooting when kubectl exec is insufficient
because a container has crashed or a container image doesn't include debugging
utilities, such as with distroless images.
Example debugging using ephemeral containers
You can use the kubectl debug command to add ephemeral containers to a
running Pod. First, create a pod for the example:
kubectl run ephemeral-demo --image=k8s.gcr.io/pause:3.1 --restart=Never
The examples in this section use the pause container image because it does not
contain debugging utilities, but this method works with all container
images.
If you attempt to use kubectl exec to create a shell you will see an error
because there is no shell in this container image.
kubectl exec -it ephemeral-demo -- sh
OCI runtime exec failed: exec failed: container_linux.go:346: starting container process caused "exec: \"sh\": executable file not found in $PATH": unknown
You can instead add a debugging container using kubectl debug. If you
specify the -i/--interactive argument, kubectl will automatically attach
to the console of the Ephemeral Container.
Defaulting debug container name to debugger-8xzrl.
If you don't see a command prompt, try pressing enter.
/ #
This command adds a new busybox container and attaches to it. The --target
parameter targets the process namespace of another container. It's necessary
here because kubectl run does not enable process namespace sharing in the pod it
creates.
Note: The --target parameter must be supported by the Container Runtime. When not supported,
the Ephemeral Container may not be started, or it may be started with an
isolated process namespace so that ps does not reveal processes in other
containers.
You can view the state of the newly created ephemeral container using kubectl describe:
Use kubectl delete to remove the Pod when you're finished:
kubectl delete pod ephemeral-demo
Debugging using a copy of the Pod
Sometimes Pod configuration options make it difficult to troubleshoot in certain
situations. For example, you can't run kubectl exec to troubleshoot your
container if your container image does not include a shell or if your application
crashes on startup. In these situations you can use kubectl debug to create a
copy of the Pod with configuration values changed to aid debugging.
Copying a Pod while adding a new container
Adding a new container can be useful when your application is running but not
behaving as you expect and you'd like to add additional troubleshooting
utilities to the Pod.
For example, maybe your application's container images are built on busybox
but you need debugging utilities not included in busybox. You can simulate
this scenario using kubectl run:
kubectl run myapp --image=busybox:1.28 --restart=Never -- sleep 1d
Run this command to create a copy of myapp named myapp-debug that adds a
new Ubuntu container for debugging:
Defaulting debug container name to debugger-w7xmf.
If you don't see a command prompt, try pressing enter.
root@myapp-debug:/#
Note:
kubectl debug automatically generates a container name if you don't choose
one using the --container flag.
The -i flag causes kubectl debug to attach to the new container by
default. You can prevent this by specifying --attach=false. If your session
becomes disconnected you can reattach using kubectl attach.
The --share-processes allows the containers in this Pod to see processes
from the other containers in the Pod. For more information about how this
works, see Share Process Namespace between Containers in a Pod.
Don't forget to clean up the debugging Pod when you're finished with it:
kubectl delete pod myapp myapp-debug
Copying a Pod while changing its command
Sometimes it's useful to change the command for a container, for example to
add a debugging flag or because the application is crashing.
To simulate a crashing application, use kubectl run to create a container
that immediately exits:
kubectl run --image=busybox:1.28 myapp -- false
You can see using kubectl describe pod myapp that this container is crashing:
You can use kubectl debug to create a copy of this Pod with the command
changed to an interactive shell:
kubectl debug myapp -it --copy-to=myapp-debug --container=myapp -- sh
If you don't see a command prompt, try pressing enter.
/ #
Now you have an interactive shell that you can use to perform tasks like
checking filesystem paths or running the container command manually.
Note:
To change the command of a specific container you must
specify its name using --container or kubectl debug will instead
create a new container to run the command you specified.
The -i flag causes kubectl debug to attach to the container by default.
You can prevent this by specifying --attach=false. If your session becomes
disconnected you can reattach using kubectl attach.
Don't forget to clean up the debugging Pod when you're finished with it:
kubectl delete pod myapp myapp-debug
Copying a Pod while changing container images
In some situations you may want to change a misbehaving Pod from its normal
production container images to an image containing a debugging build or
additional utilities.
As an example, create a Pod using kubectl run:
kubectl run myapp --image=busybox:1.28 --restart=Never -- sleep 1d
Now use kubectl debug to make a copy and change its container image
to ubuntu:
The syntax of --set-image uses the same container_name=image syntax as
kubectl set image. *=ubuntu means change the image of all containers
to ubuntu.
Don't forget to clean up the debugging Pod when you're finished with it:
kubectl delete pod myapp myapp-debug
Debugging via a shell on the node
If none of these approaches work, you can find the Node on which the Pod is
running and create a privileged Pod running in the host namespaces. To create
an interactive shell on a node using kubectl debug, run:
kubectl debug node/mynode -it --image=ubuntu
Creating debugging pod node-debugger-mynode-pdx84 with container debugger on node mynode.
If you don't see a command prompt, try pressing enter.
root@ek8s:/#
When creating a debugging session on a node, keep in mind that:
kubectl debug automatically generates the name of the new Pod based on
the name of the Node.
The container runs in the host IPC, Network, and PID namespaces.
The root filesystem of the Node will be mounted at /host.
Don't forget to clean up the debugging Pod when you're finished with it:
kubectl delete pod node-debugger-mynode-pdx84
1.6 - Determine the Reason for Pod Failure
This page shows how to write and read a Container
termination message.
Termination messages provide a way for containers to write
information about fatal events to a location where it can
be easily retrieved and surfaced by tools like dashboards
and monitoring software. In most cases, information that you
put in a termination message should also be written to
the general
Kubernetes logs.
Before you begin
You need to have a Kubernetes cluster, and the kubectl command-line tool must
be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a
cluster, you can create one by using
minikube
or you can use one of these Kubernetes playgrounds:
In the YAML file, in the command and args fields, you can see that the
container sleeps for 10 seconds and then writes "Sleep expired" to
the /dev/termination-log file. After the container writes
the "Sleep expired" message, it terminates.
Display information about the Pod:
kubectl get pod termination-demo
Repeat the preceding command until the Pod is no longer running.
Use a Go template to filter the output so that it includes
only the termination message:
kubectl get pod termination-demo -o go-template="{{range .status.containerStatuses}}{{.lastState.terminated.message}}{{end}}"
If you are running a multi-container pod, you can use a Go template to include the container's name. By doing so, you can discover which of the containers is failing:
kubectl get pod multi-container-pod -o go-template='{{range .status.containerStatuses}}{{printf "%s:\n%s\n\n" .name .lastState.terminated.message}}{{end}}'
Customizing the termination message
Kubernetes retrieves termination messages from the termination message file
specified in the terminationMessagePath field of a Container, which has a default
value of /dev/termination-log. By customizing this field, you can tell Kubernetes
to use a different file. Kubernetes use the contents from the specified file to
populate the Container's status message on both success and failure.
The termination message is intended to be brief final status, such as an assertion failure message.
The kubelet truncates messages that are longer than 4096 bytes. The total message length across all
containers will be limited to 12KiB. The default termination message path is /dev/termination-log.
You cannot set the termination message path after a Pod is launched
In the following example, the container writes termination messages to
/tmp/my-log for Kubernetes to retrieve:
Moreover, users can set the terminationMessagePolicy field of a Container for
further customization. This field defaults to "File" which means the termination
messages are retrieved only from the termination message file. By setting the
terminationMessagePolicy to "FallbackToLogsOnError", you can tell Kubernetes
to use the last chunk of container log output if the termination message file
is empty and the container exited with an error. The log output is limited to
2048 bytes or 80 lines, whichever is smaller.
What's next
See the terminationMessagePath field in
Container.
This page shows how to use kubectl exec to get a shell to a
running container.
Before you begin
You need to have a Kubernetes cluster, and the kubectl command-line tool must
be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a
cluster, you can create one by using
minikube
or you can use one of these Kubernetes playgrounds:
Note: The double dash (--) separates the arguments you want to pass to the command from the kubectl arguments.
In your shell, list the root directory:
# Run this inside the container
ls /
In your shell, experiment with other commands. Here are
some examples:
# You can run these example commands inside the container
ls /
cat /proc/mounts
cat /proc/1/maps
apt-get update
apt-get install -y tcpdump
tcpdump
apt-get install -y lsof
lsof
apt-get install -y procps
ps aux
ps aux | grep nginx
Writing the root page for nginx
Look again at the configuration file for your Pod. The Pod
has an emptyDir volume, and the container mounts the volume
at /usr/share/nginx/html.
In your shell, create an index.html file in the /usr/share/nginx/html
directory:
# Run this inside the containerecho'Hello shell demo' > /usr/share/nginx/html/index.html
In your shell, send a GET request to the nginx server:
# Run this in the shell inside your container
apt-get update
apt-get install curl
curl http://localhost/
The output shows the text that you wrote to the index.html file:
Hello shell demo
When you are finished with your shell, enter exit.
exit# To quit the shell in the container
Running individual commands in a container
In an ordinary command window, not your shell, list the environment
variables in the running container:
kubectl exec shell-demo env
Experiment with running other commands. Here are some examples:
kubectl exec shell-demo -- ps aux
kubectl exec shell-demo -- ls /
kubectl exec shell-demo -- cat /proc/1/mounts
Opening a shell when a Pod has more than one container
If a Pod has more than one container, use --container or -c to
specify a container in the kubectl exec command. For example,
suppose you have a Pod named my-pod, and the Pod has two containers
named main-app and helper-app. The following command would open a
shell to the main-app container.
This doc is about cluster troubleshooting; we assume you have already ruled out your application as the root cause of the
problem you are experiencing. See
the application troubleshooting guide for tips on application debugging.
You may also visit the troubleshooting overview document for more information.
Listing your cluster
The first thing to debug in your cluster is if your nodes are all registered correctly.
Run the following command:
kubectl get nodes
And verify that all of the nodes you expect to see are present and that they are all in the Ready state.
To get detailed information about the overall health of your cluster, you can run:
kubectl cluster-info dump
Example: debugging a down/unreachable node
Sometimes when debugging it can be useful to look at the status of a node -- for example, because you've noticed strange behavior of a Pod that's running on the node, or to find out why a Pod won't schedule onto the node. As with Pods, you can use kubectl describe node and kubectl get node -o yaml to retrieve detailed information about nodes. For example, here's what you'll see if a node is down (disconnected from the network, or kubelet dies and won't restart, etc.). Notice the events that show the node is NotReady, and also notice that the pods are no longer running (they are evicted after five minutes of NotReady status).
kubectl get nodes
NAME STATUS ROLES AGE VERSION
kube-worker-1 NotReady <none> 1h v1.23.3
kubernetes-node-bols Ready <none> 1h v1.23.3
kubernetes-node-st6x Ready <none> 1h v1.23.3
kubernetes-node-unaj Ready <none> 1h v1.23.3
kubectl describe node kube-worker-1
Name: kube-worker-1
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=linux
kubernetes.io/arch=amd64
kubernetes.io/hostname=kube-worker-1
kubernetes.io/os=linux
Annotations: kubeadm.alpha.kubernetes.io/cri-socket: /run/containerd/containerd.sock
node.alpha.kubernetes.io/ttl: 0
volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Thu, 17 Feb 2022 16:46:30 -0500
Taints: node.kubernetes.io/unreachable:NoExecute
node.kubernetes.io/unreachable:NoSchedule
Unschedulable: false
Lease:
HolderIdentity: kube-worker-1
AcquireTime: <unset>
RenewTime: Thu, 17 Feb 2022 17:13:09 -0500
Conditions:
Type Status LastHeartbeatTime LastTransitionTime Reason Message
---- ------ ----------------- ------------------ ------ -------
NetworkUnavailable False Thu, 17 Feb 2022 17:09:13 -0500 Thu, 17 Feb 2022 17:09:13 -0500 WeaveIsUp Weave pod has set this
MemoryPressure Unknown Thu, 17 Feb 2022 17:12:40 -0500 Thu, 17 Feb 2022 17:13:52 -0500 NodeStatusUnknown Kubelet stopped posting node status.
DiskPressure Unknown Thu, 17 Feb 2022 17:12:40 -0500 Thu, 17 Feb 2022 17:13:52 -0500 NodeStatusUnknown Kubelet stopped posting node status.
PIDPressure Unknown Thu, 17 Feb 2022 17:12:40 -0500 Thu, 17 Feb 2022 17:13:52 -0500 NodeStatusUnknown Kubelet stopped posting node status.
Ready Unknown Thu, 17 Feb 2022 17:12:40 -0500 Thu, 17 Feb 2022 17:13:52 -0500 NodeStatusUnknown Kubelet stopped posting node status.
Addresses:
InternalIP: 192.168.0.113
Hostname: kube-worker-1
Capacity:
cpu: 2
ephemeral-storage: 15372232Ki
hugepages-2Mi: 0
memory: 2025188Ki
pods: 110
Allocatable:
cpu: 2
ephemeral-storage: 14167048988
hugepages-2Mi: 0
memory: 1922788Ki
pods: 110
System Info:
Machine ID: 9384e2927f544209b5d7b67474bbf92b
System UUID: aa829ca9-73d7-064d-9019-df07404ad448
Boot ID: 5a295a03-aaca-4340-af20-1327fa5dab5c
Kernel Version: 5.13.0-28-generic
OS Image: Ubuntu 21.10
Operating System: linux
Architecture: amd64
Container Runtime Version: containerd://1.5.9
Kubelet Version: v1.23.3
Kube-Proxy Version: v1.23.3
Non-terminated Pods: (4 in total)
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits Age
--------- ---- ------------ ---------- --------------- ------------- ---
default nginx-deployment-67d4bdd6f5-cx2nz 500m (25%) 500m (25%) 128Mi (6%) 128Mi (6%) 23m
default nginx-deployment-67d4bdd6f5-w6kd7 500m (25%) 500m (25%) 128Mi (6%) 128Mi (6%) 23m
kube-system kube-proxy-dnxbz 0 (0%) 0 (0%) 0 (0%) 0 (0%) 28m
kube-system weave-net-gjxxp 100m (5%) 0 (0%) 200Mi (10%) 0 (0%) 28m
Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits
-------- -------- ------
cpu 1100m (55%) 1 (50%)
memory 456Mi (24%) 256Mi (13%)
ephemeral-storage 0 (0%) 0 (0%)
hugepages-2Mi 0 (0%) 0 (0%)
Events:
...
kubectl get node kube-worker-1 -o yaml
apiVersion:v1kind:Nodemetadata:annotations:kubeadm.alpha.kubernetes.io/cri-socket:/run/containerd/containerd.socknode.alpha.kubernetes.io/ttl:"0"volumes.kubernetes.io/controller-managed-attach-detach:"true"creationTimestamp:"2022-02-17T21:46:30Z"labels:beta.kubernetes.io/arch:amd64beta.kubernetes.io/os:linuxkubernetes.io/arch:amd64kubernetes.io/hostname:kube-worker-1kubernetes.io/os:linuxname:kube-worker-1resourceVersion:"4026"uid:98efe7cb-2978-4a0b-842a-1a7bf12c05f8spec:{}status:addresses:- address:192.168.0.113type:InternalIP- address:kube-worker-1type:Hostnameallocatable:cpu:"2"ephemeral-storage:"14167048988"hugepages-2Mi:"0"memory:1922788Kipods:"110"capacity:cpu:"2"ephemeral-storage:15372232Kihugepages-2Mi:"0"memory:2025188Kipods:"110"conditions:- lastHeartbeatTime:"2022-02-17T22:20:32Z"lastTransitionTime:"2022-02-17T22:20:32Z"message:Weave pod has set thisreason:WeaveIsUpstatus:"False"type:NetworkUnavailable- lastHeartbeatTime:"2022-02-17T22:20:15Z"lastTransitionTime:"2022-02-17T22:13:25Z"message:kubelet has sufficient memory availablereason:KubeletHasSufficientMemorystatus:"False"type:MemoryPressure- lastHeartbeatTime:"2022-02-17T22:20:15Z"lastTransitionTime:"2022-02-17T22:13:25Z"message:kubelet has no disk pressurereason:KubeletHasNoDiskPressurestatus:"False"type:DiskPressure- lastHeartbeatTime:"2022-02-17T22:20:15Z"lastTransitionTime:"2022-02-17T22:13:25Z"message:kubelet has sufficient PID availablereason:KubeletHasSufficientPIDstatus:"False"type:PIDPressure- lastHeartbeatTime:"2022-02-17T22:20:15Z"lastTransitionTime:"2022-02-17T22:15:15Z"message:kubelet is posting ready status. AppArmor enabledreason:KubeletReadystatus:"True"type:ReadydaemonEndpoints:kubeletEndpoint:Port:10250nodeInfo:architecture:amd64bootID:22333234-7a6b-44d4-9ce1-67e31dc7e369containerRuntimeVersion:containerd://1.5.9kernelVersion:5.13.0-28-generickubeProxyVersion:v1.23.3kubeletVersion:v1.23.3machineID:9384e2927f544209b5d7b67474bbf92boperatingSystem:linuxosImage:Ubuntu 21.10systemUUID:aa829ca9-73d7-064d-9019-df07404ad448
Looking at logs
For now, digging deeper into the cluster requires logging into the relevant machines. Here are the locations
of the relevant log files. On systemd-based systems, you may need to use journalctl instead of examining log files.
Control Plane nodes
/var/log/kube-apiserver.log - API Server, responsible for serving the API
/var/log/kube-scheduler.log - Scheduler, responsible for making scheduling decisions
/var/log/kube-controller-manager.log - a component that runs most Kubernetes built-in controllers, with the notable exception of scheduling (the kube-scheduler handles scheduling).
Worker Nodes
/var/log/kubelet.log - logs from the kubelet, responsible for running containers on the node
/var/log/kube-proxy.log - logs from kube-proxy, which is responsible for directing traffic to Service endpoints
Cluster failure modes
This is an incomplete list of things that could go wrong, and how to adjust your cluster setup to mitigate the problems.
Contributing causes
VM(s) shutdown
Network partition within cluster, or between cluster and users
Crashes in Kubernetes software
Data loss or unavailability of persistent storage (e.g. GCE PD or AWS EBS volume)
Operator error, for example misconfigured Kubernetes software or application software
Specific scenarios
API server VM shutdown or apiserver crashing
Results
unable to stop, update, or start new pods, services, replication controller
existing pods and services should continue to work normally, unless they depend on the Kubernetes API
API server backing storage lost
Results
the kube-apiserver component fails to start successfully and become healthy
kubelets will not be able to reach it but will continue to run the same pods and provide the same service proxying
manual recovery or recreation of apiserver state necessary before apiserver is restarted
Supporting services (node controller, replication controller manager, scheduler, etc) VM shutdown or crashes
currently those are colocated with the apiserver, and their unavailability has similar consequences as apiserver
in future, these will be replicated as well and may not be co-located
they do not have their own persistent state
Individual node (VM or physical machine) shuts down
Results
pods on that Node stop running
Network partition
Results
partition A thinks the nodes in partition B are down; partition B thinks the apiserver is down. (Assuming the master VM ends up in partition A.)
Kubelet software fault
Results
crashing kubelet cannot start new pods on the node
kubelet might delete the pods or not
node marked unhealthy
replication controllers start new pods elsewhere
Cluster operator error
Results
loss of pods, services, etc
lost of apiserver backing store
users unable to read API
etc.
Mitigations
Action: Use IaaS provider's automatic VM restarting feature for IaaS VMs
Mitigates: Apiserver VM shutdown or apiserver crashing
Mitigates: Supporting services VM shutdown or crashes
Action: Use IaaS providers reliable storage (e.g. GCE PD or AWS EBS volume) for VMs with apiserver+etcd
For Kubernetes, the Metrics API offers a basic set of metrics to support automatic scaling and
similar use cases. This API makes information available about resource usage for node and pod,
including metrics for CPU and memory. If you deploy the Metrics API into your cluster, clients of
the Kubernetes API can then query for this information, and you can use Kubernetes' access control
mechanisms to manage permissions to do so.
You can also view the resource metrics using the
kubectl top
command.
Note: The Metrics API, and the metrics pipeline that it enables, only offers the minimum
CPU and memory metrics to enable automatic scaling using HPA and / or VPA.
If you would like to provide a more complete set of metrics, you can complement
the simpler Metrics API by deploying a second
metrics pipeline
that uses the Custom Metrics API.
Figure 1 illustrates the architecture of the resource metrics pipeline.
Figure 1. Resource Metrics Pipeline
The architecture components, from right to left in the figure, consist of the following:
cAdvisor: Daemon for collecting, aggregating and exposing
container metrics included in Kubelet.
kubelet: Node agent for managing container
resources. Resource metrics are accessible using the /metrics/resource and /stats kubelet
API endpoints.
Summary API: API provided by the kubelet for discovering and retrieving
per-node summarized stats available through the /stats endpoint.
metrics-server: Cluster addon component that collects and aggregates resource
metrics pulled from each kubelet. The API server serves Metrics API for use by HPA, VPA, and by
the kubectl top command. Metrics Server is a reference implementation of the Metrics API.
Metrics API: Kubernetes API supporting access to CPU and memory used for
workload autoscaling. To make this work in your cluster, you need an API extension server that
provides the Metrics API.
Note: cAdvisor supports reading metrics from cgroups, which works with typical container runtimes on Linux.
If you use a container runtime that uses another resource isolation mechanism, for example
virtualization, then that container runtime must support
CRI Container Metrics
in order for metrics to be available to the kubelet.
Metrics API
FEATURE STATE:Kubernetes 1.8 [beta]
The metrics-server implements the Metrics API. This API allows you to access CPU and memory usage
for the nodes and pods in your cluster. Its primary role is to feed resource usage metrics to K8s
autoscaler components.
Here is an example of the Metrics API request for a minikube node piped through jq for easier
reading:
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes/minikube" | jq '.'
Here is an example of the Metrics API request for a kube-scheduler-minikube pod contained in the
kube-system namespace and piped through jq for easier reading:
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-scheduler-minikube" | jq '.'
Note: You must deploy the metrics-server or alternative adapter that serves the Metrics API to be able
to access it.
Measuring resource usage
CPU
CPU is reported as the average core usage measured in cpu units. One cpu, in Kubernetes, is
equivalent to 1 vCPU/Core for cloud providers, and 1 hyper-thread on bare-metal Intel processors.
This value is derived by taking a rate over a cumulative CPU counter provided by the kernel (in
both Linux and Windows kernels). The time window used to calculate CPU is shown under window field
in Metrics API.
To learn more about how Kubernetes allocates and measures CPU resources, see
meaning of CPU.
Memory
Memory is reported as the working set, measured in bytes, at the instant the metric was collected.
In an ideal world, the "working set" is the amount of memory in-use that cannot be freed under
memory pressure. However, calculation of the working set varies by host OS, and generally makes
heavy use of heuristics to produce an estimate.
The Kubernetes model for a container's working set expects that the container runtime counts
anonymous memory associated with the container in question. The working set metric typically also
includes some cached (file-backed) memory, because the host OS cannot always reclaim pages.
To learn more about how Kubernetes allocates and measures memory resources, see
meaning of memory.
Metrics Server
The metrics-server fetches resource metrics from the kubelets and exposes them in the Kubernetes
API server through the Metrics API for use by the HPA and VPA. You can also view these metrics
using the kubectl top command.
The metrics-server uses the Kubernetes API to track nodes and pods in your cluster. The
metrics-server queries each node over HTTP to fetch metrics. The metrics-server also builds an
internal view of pod metadata, and keeps a cache of pod health. That cached pod health information
is available via the extension API that the metrics-server makes available.
For example with an HPA query, the metrics-server needs to identify which pods fulfill the label
selectors in the deployment.
The metrics-server calls the kubelet API
to collect metrics from each node. Depending on the metrics-server version it uses:
Metrics resource endpoint /metrics/resource in version v0.6.0+ or
Summary API endpoint /stats/summary in older versions
Note: The summary API /stats/summary endpoint will be replaced by the /metrics/resource endpoint
beginning with metrics-server 0.6.x.
2.2 - Tools for Monitoring Resources
To scale an application and provide a reliable service, you need to
understand how the application behaves when it is deployed. You can examine
application performance in a Kubernetes cluster by examining the containers,
pods,
services, and
the characteristics of the overall cluster. Kubernetes provides detailed
information about an application's resource usage at each of these levels.
This information allows you to evaluate your application's performance and
where bottlenecks can be removed to improve overall performance.
In Kubernetes, application monitoring does not depend on a single monitoring solution.
On new clusters, you can use resource metrics or
full metrics pipelines to collect monitoring statistics.
Resource metrics pipeline
The resource metrics pipeline provides a limited set of metrics related to
cluster components such as the
Horizontal Pod Autoscaler
controller, as well as the kubectl top utility.
These metrics are collected by the lightweight, short-term, in-memory
metrics-server and
are exposed via the metrics.k8s.io API.
metrics-server discovers all nodes on the cluster and
queries each node's
kubelet for CPU and
memory usage. The kubelet acts as a bridge between the Kubernetes master and
the nodes, managing the pods and containers running on a machine. The kubelet
translates each pod into its constituent containers and fetches individual
container usage statistics from the container runtime through the container
runtime interface. The kubelet fetches this information from the integrated
cAdvisor for the legacy Docker integration. It then exposes the aggregated pod
resource usage statistics through the metrics-server Resource Metrics API.
This API is served at /metrics/resource/v1beta1 on the kubelet's authenticated and
read-only ports.
Full metrics pipeline
A full metrics pipeline gives you access to richer metrics. Kubernetes can
respond to these metrics by automatically scaling or adapting the cluster
based on its current state, using mechanisms such as the Horizontal Pod
Autoscaler. The monitoring pipeline fetches metrics from the kubelet and
then exposes them to Kubernetes via an adapter by implementing either the
custom.metrics.k8s.io or external.metrics.k8s.io API.
Prometheus, a CNCF project, can natively monitor Kubernetes, nodes, and Prometheus itself.
Full metrics pipeline projects that are not part of the CNCF are outside the scope of Kubernetes documentation.
What's next
Learn about additional debugging tools, including:
Node Problem Detector is a daemon for monitoring and reporting about a node's health.
You can run Node Problem Detector as a DaemonSet or as a standalone daemon.
Node Problem Detector collects information about node problems from various daemons
and reports these conditions to the API server as NodeCondition
and Event.
You need to have a Kubernetes cluster, and the kubectl command-line tool must
be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a
cluster, you can create one by using
minikube
or you can use one of these Kubernetes playgrounds:
Node Problem Detector only supports file based kernel log.
Log tools such as journald are not supported.
Node Problem Detector uses the kernel log format for reporting kernel issues.
To learn how to extend the kernel log format, see Add support for another log format.
Enabling Node Problem Detector
Some cloud providers enable Node Problem Detector as an Addon.
You can also enable Node Problem Detector with kubectl or by creating an Addon pod.
Using kubectl to enable Node Problem Detector
kubectl provides the most flexible management of Node Problem Detector.
You can overwrite the default configuration to fit it into your environment or
to detect customized node problems. For example:
Create a Node Problem Detector configuration similar to node-problem-detector.yaml:
Using an Addon pod to enable Node Problem Detector
If you are using a custom cluster bootstrap solution and don't need
to overwrite the default configuration, you can leverage the Addon pod to
further automate the deployment.
Create node-problem-detector.yaml, and save the configuration in the Addon pod's
directory /etc/kubernetes/addons/node-problem-detector on a control plane node.
Overwrite the configuration
The default configuration
is embedded when building the Docker image of Node Problem Detector.
However, you can use a ConfigMap
to overwrite the configuration:
apiVersion:apps/v1kind:DaemonSetmetadata:name:node-problem-detector-v0.1namespace:kube-systemlabels:k8s-app:node-problem-detectorversion:v0.1kubernetes.io/cluster-service:"true"spec:selector:matchLabels:k8s-app:node-problem-detector version:v0.1kubernetes.io/cluster-service:"true"template:metadata:labels:k8s-app:node-problem-detectorversion:v0.1kubernetes.io/cluster-service:"true"spec:hostNetwork:truecontainers:- name:node-problem-detectorimage:k8s.gcr.io/node-problem-detector:v0.1securityContext:privileged:trueresources:limits:cpu:"200m"memory:"100Mi"requests:cpu:"20m"memory:"20Mi"volumeMounts:- name:logmountPath:/logreadOnly:true- name:config# Overwrite the config/ directory with ConfigMap volumemountPath:/configreadOnly:truevolumes:- name:loghostPath:path:/var/log/- name:config# Define ConfigMap volumeconfigMap:name:node-problem-detector-config
Recreate the Node Problem Detector with the new configuration file:
# If you have a node-problem-detector running, delete before recreating
kubectl delete -f https://k8s.io/examples/debug/node-problem-detector.yaml
kubectl apply -f https://k8s.io/examples/debug/node-problem-detector-configmap.yaml
Note: This approach only applies to a Node Problem Detector started with kubectl.
Overwriting a configuration is not supported if a Node Problem Detector runs as a cluster Addon.
The Addon manager does not support ConfigMap.
Kernel Monitor
Kernel Monitor is a system log monitor daemon supported in the Node Problem Detector.
Kernel monitor watches the kernel log and detects known kernel issues following predefined rules.
The Kernel Monitor matches kernel issues according to a set of predefined rule list in
config/kernel-monitor.json. The rule list is extensible. You can expand the rule list by overwriting the
configuration.
Add new NodeConditions
To support a new NodeCondition, create a condition definition within the conditions field in
config/kernel-monitor.json, for example:
To detect new problems, you can extend the rules field in config/kernel-monitor.json
with a new rule definition:
{
"type": "temporary/permanent",
"condition": "NodeConditionOfPermanentIssue",
"reason": "CamelCaseShortReason",
"message": "regexp matching the issue in the kernel log"
}
Configure path for the kernel log device
Check your kernel log path location in your operating system (OS) distribution.
The Linux kernel log device is usually presented as /dev/kmsg. However, the log path location varies by OS distribution.
The log field in config/kernel-monitor.json represents the log path inside the container.
You can configure the log field to match the device path as seen by the Node Problem Detector.
Add support for another log format
Kernel monitor uses the
Translator plugin to translate the internal data structure of the kernel log.
You can implement a new translator for a new log format.
Recommendations and restrictions
It is recommended to run the Node Problem Detector in your cluster to monitor node health.
When running the Node Problem Detector, you can expect extra resource overhead on each node.
Usually this is fine, because:
The kernel log grows relatively slowly.
A resource limit is set for the Node Problem Detector.
Even under high load, the resource usage is acceptable. For more information, see the Node Problem Detector
benchmark result.
2.4 - Debugging Kubernetes nodes with crictl
FEATURE STATE:Kubernetes v1.11 [stable]
crictl is a command-line interface for CRI-compatible container runtimes.
You can use it to inspect and debug container runtimes and applications on a
Kubernetes node. crictl and its source are hosted in the
cri-tools repository.
Before you begin
crictl requires a Linux operating system with a CRI runtime.
Installing crictl
You can download a compressed archive crictl from the cri-tools
release page, for several
different architectures. Download the version that corresponds to your version
of Kubernetes. Extract it and move it to a location on your system path, such as
/usr/local/bin/.
General usage
The crictl command has several subcommands and runtime flags. Use
crictl help or crictl <subcommand> help for more details.
You can set the endpoint for crictl by doing one of the following:
Set the --runtime-endpoint and --image-endpoint flags.
Set the CONTAINER_RUNTIME_ENDPOINT and IMAGE_SERVICE_ENDPOINT environment
variables.
Set the endpoint in the configuration file /etc/crictl.yaml. To specify a
different file, use the --config=PATH_TO_FILE flag when you run crictl.
Note: If you don't set an endpoint, crictl attempts to connect to a list of known
endpoints, which might result in an impact to performance.
You can also specify timeout values when connecting to the server and enable or
disable debugging, by specifying timeout or debug values in the configuration
file or using the --timeout and --debug command-line flags.
To view or edit the current configuration, view or edit the contents of
/etc/crictl.yaml. For example, the configuration when using the containerd
container runtime would be similar to this:
The following examples show some crictl commands and example output.
Warning: If you use crictl to create pod sandboxes or containers on a running
Kubernetes cluster, the Kubelet will eventually delete them. crictl is not a
general purpose workflow tool, but a tool that is useful for debugging.
List pods
List all pods:
crictl pods
The output is similar to this:
POD ID CREATED STATE NAME NAMESPACE ATTEMPT
926f1b5a1d33a About a minute ago Ready sh-84d7dcf559-4r2gq default 0
4dccb216c4adb About a minute ago Ready nginx-65899c769f-wv2gp default 0
a86316e96fa89 17 hours ago Ready kube-proxy-gblk4 kube-system 0
919630b8f81f1 17 hours ago Ready nvidia-device-plugin-zgbbv kube-system 0
List pods by name:
crictl pods --name nginx-65899c769f-wv2gp
The output is similar to this:
POD ID CREATED STATE NAME NAMESPACE ATTEMPT
4dccb216c4adb 2 minutes ago Ready nginx-65899c769f-wv2gp default 0
List pods by label:
crictl pods --label run=nginx
The output is similar to this:
POD ID CREATED STATE NAME NAMESPACE ATTEMPT
4dccb216c4adb 2 minutes ago Ready nginx-65899c769f-wv2gp default 0
CONTAINER ID IMAGE CREATED STATE NAME ATTEMPT
1f73f2d81bf98 busybox@sha256:141c253bc4c3fd0a201d32dc1f493bcf3fff003b6df416dea4f41046e0f37d47 7 minutes ago Running sh 1
9c5951df22c78 busybox@sha256:141c253bc4c3fd0a201d32dc1f493bcf3fff003b6df416dea4f41046e0f37d47 8 minutes ago Exited sh 0
87d3992f84f74 nginx@sha256:d0a8828cccb73397acb0073bf34f4d7d8aa315263f1e7806bf8c55d8ac139d5f 8 minutes ago Running nginx 0
1941fb4da154f k8s-gcrio.azureedge.net/hyperkube-amd64@sha256:00d814b1f7763f4ab5be80c58e98140dfc69df107f253d7fdd714b30a714260a 18 hours ago Running kube-proxy 0
List running containers:
crictl ps
The output is similar to this:
CONTAINER ID IMAGE CREATED STATE NAME ATTEMPT
1f73f2d81bf98 busybox@sha256:141c253bc4c3fd0a201d32dc1f493bcf3fff003b6df416dea4f41046e0f37d47 6 minutes ago Running sh 1
87d3992f84f74 nginx@sha256:d0a8828cccb73397acb0073bf34f4d7d8aa315263f1e7806bf8c55d8ac139d5f 7 minutes ago Running nginx 0
1941fb4da154f k8s-gcrio.azureedge.net/hyperkube-amd64@sha256:00d814b1f7763f4ab5be80c58e98140dfc69df107f253d7fdd714b30a714260a 17 hours ago Running kube-proxy 0
Using crictl to run a pod sandbox is useful for debugging container runtimes.
On a running Kubernetes cluster, the sandbox will eventually be stopped and
deleted by the Kubelet.
Use the crictl runp command to apply the JSON and run the sandbox.
crictl runp pod-config.json
The ID of the sandbox is returned.
Create a container
Using crictl to create a container is useful for debugging container runtimes.
On a running Kubernetes cluster, the sandbox will eventually be stopped and
deleted by the Kubelet.
Pull a busybox image
crictl pull busybox
Image is up to date for busybox@sha256:141c253bc4c3fd0a201d32dc1f493bcf3fff003b6df416dea4f41046e0f37d47
Create the container, passing the ID of the previously-created pod, the
container config file, and the pod config file. The ID of the container is
returned.
Kubernetes auditing provides a security-relevant, chronological set of records documenting
the sequence of actions in a cluster. The cluster audits the activities generated by users,
by applications that use the Kubernetes API, and by the control plane itself.
Auditing allows cluster administrators to answer the following questions:
what happened?
when did it happen?
who initiated it?
on what did it happen?
where was it observed?
from where was it initiated?
to where was it going?
Audit records begin their lifecycle inside the
kube-apiserver
component. Each request on each stage
of its execution generates an audit event, which is then pre-processed according to
a certain policy and written to a backend. The policy determines what's recorded
and the backends persist the records. The current backend implementations
include logs files and webhooks.
Each request can be recorded with an associated stage. The defined stages are:
RequestReceived - The stage for events generated as soon as the audit
handler receives the request, and before it is delegated down the handler
chain.
ResponseStarted - Once the response headers are sent, but before the
response body is sent. This stage is only generated for long-running requests
(e.g. watch).
ResponseComplete - The response body has been completed and no more bytes
will be sent.
The audit logging feature increases the memory consumption of the API server
because some context required for auditing is stored for each request.
Memory consumption depends on the audit logging configuration.
Audit policy
Audit policy defines rules about what events should be recorded and what data
they should include. The audit policy object structure is defined in the
audit.k8s.io API group.
When an event is processed, it's
compared against the list of rules in order. The first matching rule sets the
audit level of the event. The defined audit levels are:
None - don't log events that match this rule.
Metadata - log request metadata (requesting user, timestamp, resource,
verb, etc.) but not request or response body.
Request - log event metadata and request body but not response body.
This does not apply for non-resource requests.
RequestResponse - log event metadata, request and response bodies.
This does not apply for non-resource requests.
You can pass a file with the policy to kube-apiserver
using the --audit-policy-file flag. If the flag is omitted, no events are logged.
Note that the rules field must be provided in the audit policy file.
A policy with no (0) rules is treated as illegal.
apiVersion:audit.k8s.io/v1# This is required.kind:Policy# Don't generate audit events for all requests in RequestReceived stage.omitStages:- "RequestReceived"rules:# Log pod changes at RequestResponse level- level:RequestResponseresources:- group:""# Resource "pods" doesn't match requests to any subresource of pods,# which is consistent with the RBAC policy.resources:["pods"]# Log "pods/log", "pods/status" at Metadata level- level:Metadataresources:- group:""resources:["pods/log","pods/status"]# Don't log requests to a configmap called "controller-leader"- level:Noneresources:- group:""resources:["configmaps"]resourceNames:["controller-leader"]# Don't log watch requests by the "system:kube-proxy" on endpoints or services- level:Noneusers:["system:kube-proxy"]verbs:["watch"]resources:- group:""# core API groupresources:["endpoints","services"]# Don't log authenticated requests to certain non-resource URL paths.- level:NoneuserGroups:["system:authenticated"]nonResourceURLs:- "/api*"# Wildcard matching.- "/version"# Log the request body of configmap changes in kube-system.- level:Requestresources:- group:""# core API groupresources:["configmaps"]# This rule only applies to resources in the "kube-system" namespace.# The empty string "" can be used to select non-namespaced resources.namespaces:["kube-system"]# Log configmap and secret changes in all other namespaces at the Metadata level.- level:Metadataresources:- group:""# core API groupresources:["secrets","configmaps"]# Log all other resources in core and extensions at the Request level.- level:Requestresources:- group:""# core API group- group:"extensions"# Version of group should NOT be included.# A catch-all rule to log all other requests at the Metadata level.- level:Metadata# Long-running requests like watches that fall under this rule will not# generate an audit event in RequestReceived.omitStages:- "RequestReceived"
You can use a minimal audit policy file to log all requests at the Metadata level:
# Log all requests at the Metadata level.apiVersion:audit.k8s.io/v1kind:Policyrules:- level:Metadata
If you're crafting your own audit profile, you can use the audit profile for Google Container-Optimized OS as a starting point. You can check the
configure-helper.sh
script, which generates an audit policy file. You can see most of the audit policy file by looking directly at the script.
Audit backends persist audit events to an external storage.
Out of the box, the kube-apiserver provides two backends:
Log backend, which writes events into the filesystem
Webhook backend, which sends events to an external HTTP API
In all cases, audit events follow a structure defined by the Kubernetes API in the
audit.k8s.io API group.
Note:
In case of patches, request body is a JSON array with patch operations, not a JSON object
with an appropriate Kubernetes API object. For example, the following request body is a valid patch
request to /apis/batch/v1/namespaces/some-namespace/jobs/some-job-name:
The log backend writes audit events to a file in JSONlines format.
You can configure the log audit backend using the following kube-apiserver flags:
--audit-log-path specifies the log file path that log backend uses to write
audit events. Not specifying this flag disables log backend. - means standard out
--audit-log-maxage defined the maximum number of days to retain old audit log files
--audit-log-maxbackup defines the maximum number of audit log files to retain
--audit-log-maxsize defines the maximum size in megabytes of the audit log file before it gets rotated
If your cluster's control plane runs the kube-apiserver as a Pod, remember to mount the hostPath
to the location of the policy file and log file, so that audit records are persisted. For example:
The webhook audit backend sends audit events to a remote web API, which is assumed to
be a form of the Kubernetes API, including means of authentication. You can configure
a webhook audit backend using the following kube-apiserver flags:
--audit-webhook-config-file specifies the path to a file with a webhook
configuration. The webhook configuration is effectively a specialized
kubeconfig.
--audit-webhook-initial-backoff specifies the amount of time to wait after the first failed
request before retrying. Subsequent requests are retried with exponential backoff.
The webhook config file uses the kubeconfig format to specify the remote address of
the service and credentials used to connect to it.
Event batching
Both log and webhook backends support batching. Using webhook as an example, here's the list of
available flags. To get the same flag for log backend, replace webhook with log in the flag
name. By default, batching is enabled in webhook and disabled in log. Similarly, by default
throttling is enabled in webhook and disabled in log.
--audit-webhook-mode defines the buffering strategy. One of the following:
batch - buffer events and asynchronously process them in batches. This is the default.
blocking - block API server responses on processing each individual event.
blocking-strict - Same as blocking, but when there is a failure during audit logging at the
RequestReceived stage, the whole request to the kube-apiserver fails.
The following flags are used only in the batch mode:
--audit-webhook-batch-buffer-size defines the number of events to buffer before batching.
If the rate of incoming events overflows the buffer, events are dropped.
--audit-webhook-batch-max-size defines the maximum number of events in one batch.
--audit-webhook-batch-max-wait defines the maximum amount of time to wait before unconditionally
batching events in the queue.
--audit-webhook-batch-throttle-qps defines the maximum average number of batches generated
per second.
--audit-webhook-batch-throttle-burst defines the maximum number of batches generated at the same
moment if the allowed QPS was underutilized previously.
Parameter tuning
Parameters should be set to accommodate the load on the API server.
For example, if kube-apiserver receives 100 requests each second, and each request is audited only
on ResponseStarted and ResponseComplete stages, you should account for ≅200 audit
events being generated each second. Assuming that there are up to 100 events in a batch,
you should set throttling level at least 2 queries per second. Assuming that the backend can take up to
5 seconds to write events, you should set the buffer size to hold up to 5 seconds of events;
that is: 10 batches, or 1000 events.
In most cases however, the default parameters should be sufficient and you don't have to worry about
setting them manually. You can look at the following Prometheus metrics exposed by kube-apiserver
and in the logs to monitor the state of the auditing subsystem.
apiserver_audit_event_total metric contains the total number of audit events exported.
apiserver_audit_error_total metric contains the total number of events dropped due to an error
during exporting.
Log entry truncation
Both log and webhook backends support limiting the size of events that are logged.
As an example, the following is the list of flags available for the log backend:
audit-log-truncate-enabled whether event and batch truncating is enabled.
audit-log-truncate-max-batch-size maximum size in bytes of the batch sent to the underlying backend.
audit-log-truncate-max-event-size maximum size in bytes of the audit event sent to the underlying backend.
By default truncate is disabled in both webhook and log, a cluster administrator should set
audit-log-truncate-enabled or audit-webhook-truncate-enabled to enable the feature.
Learn more about Event
and the Policy
resource types by reading the Audit configuration reference.
2.6 - Developing and debugging services locally using telepresence
Note:
This section links to third party projects that provide functionality required by Kubernetes. The Kubernetes project authors aren't responsible for these projects, which are listed alphabetically. To add a project to this list, read the content guide before submitting a change. More information.
Kubernetes applications usually consist of multiple, separate services, each running in its own container. Developing and debugging these services on a remote Kubernetes cluster can be cumbersome, requiring you to get a shell on a running container in order to run debugging tools.
telepresence is a tool to ease the process of developing and debugging services locally while proxying the service to a remote Kubernetes cluster. Using telepresence allows you to use custom tools, such as a debugger and IDE, for a local service and provides the service full access to ConfigMap, secrets, and the services running on the remote cluster.
This document describes using telepresence to develop and debug services running on a remote cluster locally.
Before you begin
Kubernetes cluster is installed
kubectl is configured to communicate with the cluster
Connecting your local machine to a remote Kubernetes cluster
After installing telepresence, run telepresence connect to launch it's Daemon and connect your local workstation to the cluster.
$ telepresence connect
Launching Telepresence Daemon
...
Connected to context default (https://<cluster public IP>)
You can curl services using the Kubernetes syntax e.g. curl -ik https://kubernetes.default
Developing or debugging an existing service
When developing an application on Kubernetes, you typically program or debug a single service. The service might require access to other services for testing and debugging. One option is to use the continuous deployment pipeline, but even the fastest deployment pipeline introduces a delay in the program or debug cycle.
Use the telepresence intercept $SERVICE_NAME --port $LOCAL_PORT:REMOTE_PORT command to create an "intercept" for rerouting remote service traffic.
Where:
$SERVICE_NAME is the name of your local service
$LOCAL_PORT is the port that your service is running on your local workstation
And $REMOTE_PORT is the port your service listens to in the cluster
Running this command tells Telepresence to send remote traffic to your local service instead of the service in the remote Kubernetes cluster. Make edits to your service source code locally, save, and see the corresponding changes when accessing your remote application take effect immediately. You can also run your local service using a debugger or any other local development tool.
How does Telepresence work?
Telepresence installs a traffic-agent sidecar next to your existing application's container running in the remote cluster. It then captures all traffic requests going into the Pod, and instead of forwarding this to the application in the remote cluster, it routes all traffic (when you create a global intercept) or a subset of the traffic (when you create a personal intercept) to your local development environment.
What's next
If you're interested in a hands-on tutorial, check out this tutorial that walks through locally developing the Guestbook application on Google Kubernetes Engine.